Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev X ; 5(4)2015.
Artículo en Inglés | MEDLINE | ID: mdl-29876143

RESUMEN

We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.

2.
Opt Lett ; 39(11): 3138-41, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24875996

RESUMEN

We present our technique to create a magneto-optical trap (MOT) for dysprosium atoms using the narrow-line cooling transition at 626 nm to achieve suitable conditions for direct loading into an optical dipole trap. The MOT is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421 nm. With this combination of two cooling transitions we can trap up to 2.0·10(8) atoms at temperatures down to 6 µK. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.

3.
Opt Lett ; 38(5): 637-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455249

RESUMEN

We present measurements of the hyperfine coefficients and isotope shifts of the Dy I 683.731 nm transition, using saturated absorption spectroscopy on an atomic beam. A King Plot is drawn resulting in an updated value for the specific mass shift δν(684,sms)(164-162)=-534±17 MHz. Using fluorescence spectroscopy, we measure the excited state lifetime τ684=1.68(5) µs, yielding a linewidth of γ684=95±3 kHz. We give an upper limit to the branching ratio between the two decay channels from the excited state showing that this transition is usable for optical pumping into a dark state and demagnetization cooling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...